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Abstract: Circadian rhythms are innate biological systems that control everyday behavior
and physiology. Furthermore, bilateral interaction between the host’s circadian rhythm and
the gut microbes influences a variety of health ramifications, including metabolic diseases,
obesity, and mental health including GALT physiology and the microbiome population.
Therefore, we are studying the correlation between differential gene expression in the
chicken brain and microbiota abundance during circadian rhythms. To understand this,
we raised freshly hatched chicks under two photoperiod treatments: normal photoperiod
(NP = 12/12 LD) and extended photoperiod (EP 23/1 LD). The chicks were randomly
assigned to one of two treatments. After 21 days of circadian entrainment, the chicks
were euthanized at nine time points spaced six hours apart over 48 h to characterize the
brain transcriptomes. Each sample’s RNA was extracted, and 36 mRNA libraries were
generated and sequenced using Illumina technology, followed by data processing, count
data generation, and differential gene expression analysis. We generated an average of
17.5 million reads per library for 237.9 M reads. When aligned to the Galgal6 reference
genome, 11,867 genes had detectable expression levels, with a common dispersion value
of 0.105. To identify the genes that follow 24 h rhythms, counts per million data were
performed in DiscoRhythm. We discovered 577 genes with Cosinor and 417 with the JTK
cycle algorithm that exhibit substantial rhythms. We used weighted gene co-expression net-
work analysis (WGCNA) to analyze the correlation between differentially expressed genes
and microbiota abundance. The most enriched pathways included aldosterone-regulated
sodium reabsorption, endocrine and other factor-regulated calcium reabsorption, GABAer-
gic synapse, oxidative phosphorylation, serotonergic synapse, dopaminergic synapse and
circadian entrainment. This study builds on our previous study, and adds new findings
about the specific interactions and co-regulation of the brain transcriptome and the gut
microbiota. The interaction between gut microbiota and host gene expression highlights
the potential benefits of microbiome-modulation approaches to improve gut health and
performance in poultry.
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1. Introduction
Circadian rhythms (from Latin “circa” = around and “diem” = day) are autonomous

24 h cycles that allow organisms to synchronize their internal biological rhythms with the
external environment [1–3]. These oscillations driven by the circadian clock are observed in
organisms, from single-celled to vertebrates [4]. These clocks internally regulate the numer-
ous physiological processes of an organism via feedback loops controlled by transcription
factors [5]. The circadian pacemakers in birds are the suprachiasmatic nucleus (SCN),
pineal gland, and retina, in contrast to mammals, where the SCN is the sole pacemaker [6].
SCN is a master clock that constitutes about 20,000 neurons in the hypothalamus. It is
driven by photoreception by the retinal cells. The molecular clock comprising BMAL1/2,
CLOCK, CRY1/2, and PER1/2/3 governs the transcription and rhythmic molecular and
functional activity patterns [7]. Hence, disruption in circadian rhythms directly affects the
body’s functioning at the cellular and molecular levels, which are implicated in various
metabolic, immune, and neurodegenerative disorders [8–11]. In chickens, interruption in
these oscillations directly impacts their physiological and reproductive health, therefore it
is of utmost priority to optimize the light standards in the poultry industry. Chickens are
ideal for studying circadian regulation of homeostasis and microbiota interactions due to
their pentachromatic vision and uniqueness in detecting environmental rhythms. Their
importance as a major livestock species and food source makes them a valuable target for
continued improvement and optimization.

Circadian signaling impacts gut physiology through the vagus nerve and modulates
immune cells in the Gut Associated Lymphoid Tissue (GALT) [12]. The circadian–gut
interaction is a complex and bidirectional relationship maintaining homeostasis, includ-
ing diurnal gut microbiome composition and function [13]. This synchronicity regulates
metabolic responses to diet, lipid metabolism, and energy homeostasis [12,14–17]. Recipro-
cally, the gut microbiota influences the circadian clock, regulating the expression of clock
genes and impacting the daily rhythmicity of the host [18,19]. One feature of gut dysbiosis
is circadian asynchrony [20,21].

The bidirectional communication between the host circadian rhythm and the gut
microbiota impacts various health outcomes, including metabolic disorders, obesity, and
mental health [22]. The absence or disruption of gut microbiota profoundly affects brain
function, behavior, and various molecular factors such as neuropeptide Y (NPY) and
PYY [23]. Germ-free mice display neurochemical and functional changes compared to
conventionally colonized mice. They also exhibit decreased expression of the NMDA
receptor subunit 2A (NR2A) in the cortex and hippocampus [24] and reduced expression
of the NR2B subunit and the 5-HT receptor 1A (5HT1A) in the central amygdala and the
hippocampus [25]. In another study, a crucial neurotrophin, brain-derived neurotrophic
factor (BDNF) expression was reduced in germ-free mice, highlighting the importance of
a functioning microbiome for neuronal growth and survival [24,26]. These studies reflect
the key interactions between neural factors, the gut microbiome, and GALT physiology.
In avian species, there is emerging evidence of gut–brain crosstalk [27–29] suggesting
mechanisms similar to those in mammalian models. Despite these studies, there are
relatively few reports on the correlation between CLOCK-regulated expression and the
gut microbiota, especially in early life, and recent studies have only begun to explore the
implications of these interactions for metabolic and immune health in avian species.

Here, we show the crucial interactions and signaling pathways that are involved
in the gut–brain crosstalk in the context of early-life circadian rhythms in chickens. We
integrate brain transcriptome data with gut microbiota patterns from a circadian experi-
ment to reveal the differing outcomes between functioning and dysfunctional circadian
rhythms in early life. Furthermore, we relate co-expression and pathway activation data to
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highlight the bidirectional relationship between microbial abundance and key homeostatic
signaling patterns.

2. Material and Methods
2.1. Animal Ethics Statement

The research was conducted in compliance with international and national standards
for animal care. The Institutional Animal Care and Use Committee (IACUC) at Texas A&M
University authorized and regulated the animal studies (Assurance Number 2016-0064).

2.2. Animals and Experimental Design

All the experimental details were previously reported in our paper Hieke et al.
(2019) [30], but are briefly repeated here for clarity. Eighty hatch-day female chicks of
the Hy-Line Brown Layer breed (Gallus gallus domesticus) were procured from a local hatch-
ery (Bryan, TX, USA) and transported to the Texas A&M Poultry Research and Education
Center in College Station, Texas. In each treatment, 40 chicks were randomly assigned to
two experimental rooms with independent lighting controls. Within each room, 20 chicks
were raised in one of two brooder cages. Each room was configured for a certain photope-
riod treatment—normal photoperiod (NP) of 12 h of light and 12 h of darkness (12/12 LD),
with lights-on at 06:00 h, and Extended treatment (EP) of 23 h L and 1 h D (23/1 LD), with
lights-off from 05:00 to 06:00 h. Zeitgeber Time 0 (ZT0) was established as the time of
lights-on (06:00 h), following convention. The experimental birds were raised in identical
conditions except for photoperiod exposure, and provided with ad libitum access to food
and water. A pullet diet containing 17% crude protein and 2800 kcal of metabolizable
energy per kg was used to rear the chicks. The experimental rooms were temperature
controlled, starting at 32 ◦C for a week and then gradually dropping by around 2–3 ◦C
every week until reaching 23 ◦C, following standard chick-rearing protocols.

2.3. Sample Collection

Following circadian entrainment for 21 days, two birds were selected randomly (one
from each brooder cage) at 6 h intervals for euthanasia and sampling. Chicks were eu-
thanized by exposure to 5 min of CO2 followed by cervical dislocation. Two birds from
each photoperiod treatment were sampled every 6 h (two individuals/treatment/time
point) over a 48 h period, starting at ZT0 (a total of nine time points, a total of 18 per
treatment). For sampling during the dark period (for NP treatment), the chicks were kept
in a dark container during transport to another room for euthanasia. Brain samples were
collected within 30 min of euthanasia and were placed into RNALater (Qiagen, Hilden,
Germany) in a 1:5 ratio. As birds from both treatments had to be sampled at precisely
the exact times, four individuals concurrently carried out the same procedures, from bird
euthanasia to brain tissue collection within 30 min post-mortem. The sample tubes were
kept at 4 ◦C for at least 24 h to ensure maximum absorption of RNALater. The RNAlater
was removed after 24 h and samples were stored at −80 ◦C until RNA isolation. In our
previous study, we used qPCR-based methods to assay the expression of specific circadian
genes. Here, we generated the whole transcriptome dataset and analyzed its interactions
with the microbiota data.

2.4. RNA Isolation and Quantification

From each individual, we collected 3 mm3 of brain tissue in the vicinity of the pineal
gland, which was homogenized in Trizol reagent (Invitrogen, Carlsbad, CA, USA) using
a Mini-Beadbeater-96 and 15–30 mg of 1.0 mm ZIRCONIA beads (cat. no. 11079124zx)
(BioSpec, Bartlesville, OK, USA). We isolated total RNA and quantified RNA samples, and
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quality was assessed by evaluating protein contamination (260/280 ratio) and other organic
contamination (230/260 ratio) using a NanoDropTM 1000 spectrophotometer Thermo
Fisher Scientific, Waltham, MA, USA). The RNA integrity number (RIN) and suitability
for library construction of the samples were evaluated using an Agilent RNA 6000 Nano
kit (No:5067-1511) on a Bioanalyzer 2100 (Agilent Technologies, Inc., Santa Clara, CA,
USA) chip reader. Using a QubitTM RNA BR assay (Thermo Fisher Scientific, Waltham,
MA, USA), 20–1000 ng/L (Catalog number: Q10211), as well as a QubitTM dsDNA BR
assay, 100 pg/L–1000 ng/L, we screened total RNA isolates with RIN 8.5 or above for
genomic DNA contamination (Catalog number: Q32853). For library construction, total
RNA samples that passed these quality criteria were normalized by diluting at 400 ng/L
using nuclease-free water (NF water).

2.5. RNA Library Preparation and Transcriptome Profile Generation

We prepared the libraries from 200 ng of total RNA using the QuantSeq 3′ mRNA-
Seq Library Prep Kit FWD for Illumina kit’s instructions (Lexogen, Vienna, Austria). We
reverse-transcribed mature (poly-A-tailed) mRNA using oligo (dT) primers and Illumina-
specific Read-2 linker sequences to create complementary first-strand DNA. Next, we
synthesized the second strand of DNA using a random primer containing the Illumina-
specific Read-1 linker sequence while the DNA polymerase enzyme was present. To
eliminate contaminants that may hinder the library enrichment and indexing processes,
we purified libraries utilizing a magnetic bead-based purification step. Cleaned libraries
were normalized to 4 nM and valuated using the TapeStation 2200 equipment and the
D1000 ScreenTape assay from Agilent Technologies, Inc, Santa Clara, CA, USA. At the
Texas A&M Institute for Genome Sciences and Society (TIGSS, College Station, TX, USA),
twenty-four libraries (N = 12/treatment) were pooled in equimolar concentrations and
sequenced using an Illumina NextSeq (Illumina, San Diego, CA, USA) platform. Libraries
yielded an average of 8.8 million reads in 75 bp single-end mode.

2.6. Transcriptome Data Analysis

We carried out all bioinformatics analysis with open-source tools using a well-
established RNAseq analysis pipeline for read counts-based analyses. After removing
adapter contamination and Lexogen indices, the single-end raw reads in FASTQ format
were validated for quality with FastQC (Babraham Institute, Cambridge, UK) version 0.11.9
and MultiQC version 1.9 [31,32]. Adapter removal and quality filtering (Phred Q > 30),
as well as the removal of reads under 35 bp, were performed using Trim_Galore version
0.4.5 [33]. Reads that passed quality filters were mapped to the Gallus gallus genome, Gal-
gal6 (v6, Ensembl Release 99 GRCg6a, January 2020) [34] using the de novo splice mapper
STAR (version STAR 2.5.3a modified). Using HTSeq-count (version 0.9.1) [35], we scored
the single-end reads mapped to exon features. The obtained counts were normalized and
analyzed to study differential gene expression in the package EdgeR using a two-factor
model (version 3.26.8) on the R statistical platform (version 4.0.0) [36]. Low-expressed
genes with expression < 1 CPM were excluded from the data for further analysis. To
determine the oscillating genes, the CPM values were used to run DiscoRhythm analy-
sis, a web-based application (https://mcarlucci.shinyapps.io/discorhythm/ (accessed on
6 July 2023) [37]. The genes from DiscoRhythm with p-value < 0.05 cut-off were pulled
out from both algorithms, i.e., JTK and Cosinor. The genes from the Discorhythm were
analyzed for the normal and extended photoperiods. These genes from both normal and
extended photoperiods were analyzed using DiscoRhythm. Genes showing significant 24 h
rhythms were further analyzed in ingenuity pathway analysis (IPA) [38,39], PathfindR [39],

https://mcarlucci.shinyapps.io/discorhythm/
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pathview Web [40] and cluster profiler [41] to determine which pathway genes are activated
in the rhythms.

2.7. Microbiota Analysis

We used the OTUs obtained from the microbiota data from our previous study [30].
In this study, we extracted DNA fecal samples using the MoBio PowerFecal kit (Qiagen,
Hilden, Germany) and the 16S rRNA gene was amplified with the bacteria using published
primers [42] using Q5® High-Fidelity DNA polymerase (NEBNext® High-Fidelity 2X PCR
Master Mix, New England BioLabs, Ipswich, MA, USA) with the necessary conditions [30].
On the Illumina MiSeq platform, the amplicons were sequenced and were processed in
Mothur [43], aligning against the SILVA database [44]. Low-quality reads were filtered for
quality, and chimeras were removed. Low-abundance OTUs were filtered at 0.01% and
1% thresholds. α and β diversity analyses were conducted in R using Phyloseq and vegan
packages. Microbial differences between photoperiods were assessed via PERMANOVA,
Metastats, and LEfSe.

2.8. Microbiota Abundance—Gene Co-Expression Quantification

To characterize the correlation between the differentially expressed genes and micro-
biome abundance, we used weighted gene co-expression network analysis (WGCNA) [45],
to identify the genes and potential OTUs that are correlated under each photoperiod treat-
ment. We further processed the data for dimensionality reduction using PCA and cluster
analysis. The samples were clustered using the hierarchical cluster (hclust) function and
Dynamic Tree Cut, and the network was constructed by selecting a soft thresholding of
the correlation coefficient. We assessed the co-expression of circadian-regulated genes and
microbiota abundance using blockwiseModules. The differentially expressed genes were
assigned to different modules based on cluster analysis with the help of blockwiseModules
and further analyzed their relationship with the individual OTUs.

3. Results and Discussion
3.1. The Differential Expression Analysis of Brain Tissue

To analyze the role of photoperiods and circadian rhythms on gene expression patterns
in the brain, we focused on samples collected at ZT0 (06:00 h local time) (Figure 1A). We an-
alyzed 12 RNAseq libraries from brain tissue, with six samples from each photoperiod treat-
ment (N = 6). We generated an average of 17.5M reads per library, totaling 237933593.3 reads
(Table 1). When aligned against the Galgal6 reference genome [Ensembl 99 release version],
11,867 genes showed detectable expression levels, and the dataset showed a common
dispersion estimate of 0.105. Of the expressed genes, 607 genes were differentially ex-
pressed between the normal and extended photoperiod treatments at the ZT0 timepoint
(6 a.m.). Among these differentially expressed genes (DEGs), 451 genes were downregu-
lated, and 156 genes were upregulated in the normal photoperiods (Figure 1B). Ingenuity
Pathway Analysis (Qiagen, Hilden, Germany) showed that Dopamine degradation, S100g
family signaling pathway, Mitochondrial dysfunction, G-protein coupled receptor signal-
ing, and Serotonin degradation were downregulated in extended photoperiods. PathfindR
results showed the most activated pathways were Aldosterone-regulated sodium reab-
sorption, Endocrine and other factor-regulated calcium reabsorption, GABAergic synapse,
Oxidative phosphorylation, Serotonergic synapse, Dopaminergic synapse, Circadian en-
trainment, and Ferroptosis. with the Fold enrichment ranging between 1.5 and 6.6 (Figure 2).
The cluster enrichment analysis performed with the hierarchical clustering method grouped
the pathways based on molecular function (Figure 3).
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Figure 1. Edge R analysis: (A) Multidimensional scaling (MDS) plot of chicken brain transcriptomes 
raised under extended or normal photoperiod lighting regimens. Distances between the sample’s 
transcriptome profile correspond to the biological coefficient of variation (BCV) that represents the 
biological (nontechnical) variation. EP, Extended Photoperiod (23 h Light:1 h Dark), and NP, Nor-
mal Photoperiod (12 h light:12 h Dark). (B) A mean difference (MD) plot displaying the log2fold 
change (y-axis) versus average abundance (logCPM, x-axis) for each gene, comparing the differences 
between the extended and normal photoperiod in newly hatched chicks. Significantly up or down 
DE genes (FDR < 0.05) are highlighted in maroon and sky blue, respectively. 
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Figure 1. Edge R analysis: (A) Multidimensional scaling (MDS) plot of chicken brain transcriptomes
raised under extended or normal photoperiod lighting regimens. Distances between the sample’s
transcriptome profile correspond to the biological coefficient of variation (BCV) that represents the
biological (nontechnical) variation. EP, Extended Photoperiod (23 h Light:1 h Dark), and NP, Normal
Photoperiod (12 h light:12 h Dark). (B) A mean difference (MD) plot displaying the log2fold change
(y-axis) versus average abundance (logCPM, x-axis) for each gene, comparing the differences between
the extended and normal photoperiod in newly hatched chicks. Significantly up or down DE genes
(FDR < 0.05) are highlighted in maroon and sky blue, respectively.

Table 1. Provides a quality control summary of RNASeq Reads obtained from samples of both normal
photoperiod (NP) and extended photoperiods (EP).

QC NP_ZT0 NP_ZT24 NP_ZT48 EP_ZT0 EP_ZT24 EP_ZT48

Total M Seqs 21.48 16.43 15.31 16.25 14.66 17.84

Length 73 73 73 73 73 73

M Aligned 18.81 14.8 13.24 14.32 12.78 14.55

% Aligned 87% 90% 86% 88% 87% 84%

M Assigned 10.54 8.29 6.93 6.96 6.34 6.99

% Assigned 47% 50% 44% 43% 42% 41%
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Figure 2. Pathway enrichment analysis using pathfinder. (A) Pathway enrichment analysis of 
RNAseq brain data for the normal and extended photoperiods of chickens in pathfindR. (B) 

Figure 2. Pathway enrichment analysis using pathfinder. (A) Pathway enrichment analysis of RNAseq
brain data for the normal and extended photoperiods of chickens in pathfindR. (B) Visualization
of the pathway terms by the Gene IDs. (C) Visualization of selected enriched pathway terms and
gene interactions with each other (green nodes represent upregulated genes, and red nodes represent
downregulated genes).
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Figure 3. Clustering results for the output of pathway enrichment by PathfindR. (A) Visualization 
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extended photoperiods. (C) Bubble chart displaying enrichment results, with clusters labeled on the 
right side of each panel. The x-axis represents fold enrichment values, while the y-axis indicates 
enriched pathways. Bubble size corresponds to the number of differentially expressed genes (DEGs) 
in each pathway. The color indicates the −log10(lowest-p) value, with darker red shades indicating 
higher significance of pathway enrichment. 
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mal photoperiod (NP) and extended photoperiods (EP). 
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The co-activation of various pathways with circadian pathways is not surprising, 
given the central role of the circadian in homeostasis [46]. For instance, the enzyme 

Figure 3. Clustering results for the output of pathway enrichment by PathfindR. (A) Visualization
of pathway clusters in clustering graphs for normal and extended photoperiods. The size of each
node corresponds to its −log(lowest-p) in an enriched pathway. (B) The heatmap represents the
kappa statistic matrix graph for the chance-corrected measure of co-occurrence between normal and
extended photoperiods. (C) Bubble chart displaying enrichment results, with clusters labeled on
the right side of each panel. The x-axis represents fold enrichment values, while the y-axis indicates
enriched pathways. Bubble size corresponds to the number of differentially expressed genes (DEGs)
in each pathway. The color indicates the −log10(lowest-p) value, with darker red shades indicating
higher significance of pathway enrichment.

The co-activation of various pathways with circadian pathways is not surprising, given
the central role of the circadian in homeostasis [46]. For instance, the enzyme monoamine
oxidase A (MAOa) plays a crucial role in dopamine metabolism and is under clock control
(Figure 2) and impacts mood-related behaviors such as depression and addiction [47].
In addition to synthesis and metabolism, dopamine release contributes significantly to
circadian rhythms in behavior and physiology. Melatonin release from the pineal gland
exhibits robust rhythmicity and is commonly used as a circadian marker. Melatonin release
depends on the heteromerization of adrenergic receptors with dopamine D4 receptors,
underscoring the pivotal role of dopamine in regulating pineal function [48]. Dopamine
neuroendocrine neurons also express circadian clock genes, contributing to the circadian
regulation in the host organism. The activation of the dopamine metabolism and circadian
pathways in the NP treatment suggests the tight coordination of these systems—a sign of a
functioning circadian [49].

Mitochondrial functioning regulated under circadian activity is a dynamic process
crucial for maintaining cellular homeostasis and overall health [50]. Mitochondria plays a
role in regulating cellular redox balance, and circadian disruption impacts mitochondrial
respiration, which may induce hypoxia regulated by the HIF-1 signaling pathway [51]. In
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Figure 3, the HIF-1 signaling pathway is co-expressed with the oxidative phosphorylation
and retrograde endocannabinoid signaling which implies that the perturbations in circa-
dian rhythms can affect mitochondrial integrity and function, exacerbating oxidative stress
and impairing cellular bioenergetics, driving a surge of reactive oxygen species (ROS) [52].
These interactions underscore the interconnectedness of circadian-regulated processes,
including mitochondrial function and ROS signaling in orchestrating cellular physiology.
We also found the activation of the ferroptosis pathway, which is a term associated with
programmed cell death characterized by iron-dependent lipid peroxidation [53]. Circadian
rhythms regulate ferroptosis through clock proteins like ARNTL/BMAL1, which suppress
lipid peroxidation and oxidative stress by activating antioxidant pathways. Diurnal varia-
tions in iron metabolism, antioxidant systems, and cellular stress responses can modulate
ferroptotic susceptibility [54]. A functioning circadian clock may upregulate ferroptosis
during specific phases, promoting the clearance of damaged cells and aligning cellular
turnover with environmental cycles for optimal tissue homeostasis. Our observation of
this pathway also illuminates the role of the circadian in regulating autophagy at periodic
intervals, which can be a key part of maintaining homeostasis and stress adaptation [55].

3.2. Genes Following Circadian Rhythm

We analyzed expression intensities (CPM) of the samples from NP and EP treatments
in DiscoRhythm to identify genes showing diurnal oscillations (Figure 4B). We found
577 oscillating genes with Cosinor and 417 with the JTK-cycle algorithm showing significant
24 h rhythms (p < 0.05) (Figure 4A). These two sets accounted for 723 unique genes, of
which 269 were shared between the two algorithms (Supplementary Files S1 and S2).

We assessed the 723 oscillating genes for gene ontology germs. “The organic substance
metabolic process”, “primary metabolic process”, and “cellular metabolic process” were
the top three enriched biological processes with the highest gene counts involved. The top
three enriched cellular components with the highest gene counts included “intracellular
anatomical structure”, “organelle”, and “cytoplasm”. The top enriched molecular functions
were “heterocyclic compound binding”, “organic cyclic compound binding”, and “protein
binding” (Figure 4C).

Furthermore, to investigate differences between the NP and EP treatments, we subset
the data for ZT0 which corresponds to the start of the light phase. These genes were
enriched for canonical pathways FAK signaling, Phagosome formation, and Caveolar-
mediated endocytosis signaling (activation Z-score > 2). The primary clock genes such
as CLOCK, CRY1/2, BMAL1, ROR, and TIPIN and four GPCR receptors FGFR, SUCNR1,
HTR5, CXCL14, TACR3 showed robust 24 h rhythms. Additionally, these receptor genes
mediate G-protein coupled receptor signaling, which includes tachykinin signaling, hy-
droxytryptamine receptor signaling, cytokine signaling, and phagosome formation, which
also showed 24 h rhythms. These genes have a role in the overall immune health of the
host [56–59] normal immune signaling. The activation of SUCNR1 suggests the invoca-
tion of succinate, a versatile compound that functions like hormones and cytokines [60].
SUCNR1 regulates metabolism by modulating circadian signaling and leptin expression,
and SUCNR1-deficient adipocytes disrupt the body’s ability to respond to leptin after
feeding [61]. Succinate, a significant component within the tricarboxylic acid cycle, also
triggers the production of inflammatory cytokines such as IL-1β, IL-6, IL-8, and TNF-α [62].
Secondly, HTR signaling is responsible for serotonin release, and its expression is clock-
dependent [63]. Serotonin also immunomodulates immune cells by secreting cytokines.
Serotonin suppresses pro-inflammatory cytokines such as TNF-A and IL-1b [64,65]. Another
chemokine under clock control is CXCL14, which is secreted by a broad range of cells (im-
mune and non-immune) and modulates inflammatory responses through GPCRs [58]. Our
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findings of these interactions in the early life of a chick, and during the window of circadian
entrainment and microbiome assembly, imply a close coordination of microbiota-mediated
processes with circadian-regulated genes.
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Figure 4. DiscoRhythm analysis: (A) The number of genes showing significant (p < 0.05) oscillating
patterns with 24 h rhythms in the normal photoperiod treatments in chicken brain cells determined
by Cosinor and JTK_Cycle algorithms. 269 genes were found to be oscillating in both methods,
shown in the purple shaded area. (B) The oscillating patterns of core circadian oscillators showing
significant rhythmic expression activity, showing the (C) Gene Ontology terms for the genes involved
in circadian rhythm and showing rhythmic activity.

3.3. Correlation of Gene Expression and Gut Microbiota

To investigate the specific interactions between circadian-regulated gene expression
and the microbiota, we performed co-expression analysis using the tool WGCNA integrat-
ing the RNAseq data generated here and microbiota data from our previous study [30].
The hierarchical clustering (using ‘hclust’) showed the normal and photoperiod treatments
formed two distinct clusters (Figure 5A). The pickSoftThreshold was used for network
topology analysis and was set as power 5 (Figure 5B). Based on this power, the gene ex-
pression modules for each sample were clustered into four modules such as MEbrown,
MEturquoise, MEblue, and MEgrey (Figures 5C and 6). Each module defines the corre-
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lation between each OTU and signifies the module–microbiome relationship (Figure 5D)
(Supplementary Table S3).
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nomical Unit (OTUs are shown. (E) Top enriched pathways in each module based on the p-value
(IPA output).

The relative abundance of specific OTUs was correlated with the turquoise mod-
ule, enriched for cholesterol biosynthesis and mitochondrial dysfunction. The relative
abundance of OTU069 (Lactobacillus_72.9%. p = 0.007), OTU144 (Lachnospiraceae_NC2004,
71.9%, p = 0.008), Otu0134 (Defluviitaleaceae_UCG-011, 67.3%, p = 0.016), Otu0102 (Lach-
nospiraceae_FCS020_group, 62.1%, p = 0.03), Otu0113 (Ruminococcaceae_UCG-002, 61.9%,
p = 0.03), Otu0054 (Clostridiales_vadinBB60_group, 60.4%, p = 0.037) was negatively cor-
related with the turquoise module. This means that these bacterial groups may play
protective or inhibitory roles against pathways related to cholesterol metabolism or mi-
tochondrial dysfunction. On the other hand, MEturquoise is positively correlated with
relative abundance of Otu0055 (Gastranaerophilales_unclassified, 58.6%, p = 0.04), OTU0012
(Alistipes, 76.4%, p = 0.003), Otu0105 (Ruminococcaceae_UCG-014, 58.6%, p = 0.04), Otu0152
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(Ruminiclostridium_9, 60.8%, p = 0.03), Otu0063 (Ruminococcaceae_UCG-014, 68.1%, p = 0.014).
This positive correlation suggests these microbes might actively promote or contribute to
metabolic changes leading to elevated cholesterol synthesis and mitochondrial impairment.
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The correlations between the expressed genes and taxa in the turquoise module
highlight the coordination between microbiota members and homeostatic functions such as
cholesterol biosynthesis and mitochondrial function. The implications of these correlations
can be understood through the importance of cholesterol biogenesis for normal function.
Altered cholesterol is associated with mitochondrial dysfunction and subsequent ATP
deficiency, impacting neuronal function [66]. Additionally, mitochondrial fusion and ERK
activity are crucial in cholesterol transport, affecting steroidogenesis [67].

Mitochondrial dysfunction is also sensitive to cholesterol levels, as studies have
shown that external cholesterol levels impact mitochondrial function and inflammatory
responses [68]. Furthermore, mitochondrial membrane transporter deficiencies lead to iron
imbalance, affecting cholesterol biosynthesis and metabolic pathways [69]. The circadian
regulation of this crucial bidirectional interaction between cholesterol metabolism and
mitochondrial function points to the important interactions indicated by this module. The
correlation of these functions with specific microbial taxa in the turquoise module further
suggests the circadian-regulated microbiota–homeostatic signaling crosstalk.

In our previous studies [30], Rikenellaceae (Alistipes), Lachnospiraceae, and Ru-
minococcaceae were dominant in EP. Alistipes contributes to the production of saturated
fatty acids [70], aligning with the turquoise module’s most enriched pathways: cholesterol
biosynthesis and mitochondrial dysfunction [71]. In the NP treatment group, Lactobacil-
lus abundance correlated with the expression of cholesterol-regulating genes NPC1L1,
CYP7A1, and ABCG5, previously characterized in humans. This correlation suggests Lacto-
bacillus abundance may influence cholesterol biosynthesis and mitochondrial dysfunction
during microbiome assembly in chickens. The differential enrichment and correlation
of Lactobacillus with cholesterol biosynthesis pathways could be explained by probiotic
effects on lipid metabolism. Certain Lactobacillus strains influence cholesterol assimilation
and bile acid concentrations [72,73], with evidence showing they can reduce serum total
bile acid levels, thereby impacting cholesterol metabolism [74]. Specific strains, such as
Lactobacillus fermentum and Lactobacillus plantarum, have demonstrated probiotic effects
on hypercholesterolemia, effectively lowering cholesterol levels in animal models [75,76].
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These findings support a potential mechanistic role of Lactobacillus strains in modulating
cholesterol metabolism both in vitro and in vivo [76].

The blue module was negatively correlated with Otu0116 (Ruminococcaceae_UCG-004,
7.5%, p = 0.016), and positively correlated with Otu0046 (Ruminococcaceae_UCG-014, 58.1%,
p = 0.047), OTU0142 (Lachnospiraceae, 59.01%, p = 0.043), Otu0033 (Flavonifractor, 63.5%,
p = 0.03), OTU0039 (Clostridiales vadinBB60, 86%, p = 5.68 × 10−9), and OTU0 049 (Eubac-
terium coprostanoligenes, 98%, p = 0.0002).

The most enriched canonical pathways in blue modules were dopamine receptor
signaling, melatonin degradation, myelination signaling pathway, and WNT/β-catenin
signaling pathway analyzed in IPA (Figure 5E).

The enrichment of canonical pathways such as dopamine receptor signaling, mela-
tonin degradation, myelination signaling pathway, and WNT/β-catenin signaling pathway
in the blue module points to the functional roles of microbiota members (Figure 5E).
These pathways play crucial roles in neurotransmission, circadian rhythm regulation,
myelin formation, and cell signaling. The negative correlation with Otu0116 (Ruminococ-
caceae_UCG-004) may suggest a potential regulatory role of this taxon in modulating
dopamine receptor signaling, melatonin degradation, myelination signaling pathway, and
WNT/β-catenin signaling pathways. The presence of Ruminococcaceae and Lachnospiraceae
taxa in the positive correlations is noteworthy, as these families are known for their roles
in promoting gut health and metabolism. Flavonifractor, Clostridiales vadinBB60, and
Eubacterium coprostanoligenes are also important gut microbiota members with potential
implications for host physiology and metabolism. In chickens, there is also evidence for the
influence of these taxa on behavior: cecal microbiota transplantation with Lachnospiraceae
and Ruminococcaceae UCG-005 in chickens at an early promoted aggressive behavior in
recipient chickens by controlling the functions of the catecholaminergic and serotonergic
systems in the brain [77].

The grey module was negatively correlated with Otu0181 (Ruminococcaceae, 66.%2,
p = 0.0188), Otu0080 (Oscillibacter, 64.8%, p = 0.022), and Otu0068 (Lachnospiraceae, 60.9%,
p = 0.03). The grey module was positively correlated with Otu0029 (Ruminococcaceae_UCG-
014, 58.2%, p = 0.04), Otu0151 (Christensenellaceae_R-7_group, 60.4%, p = 0.03), and Otu0100
(Lachnospiraceae, 66.2%, p = 0.01) and was significant. The enriched pathways in this module
are the Visual Cycle, ABRA signaling pathway, Apelin cardiomyocyte signaling pathway,
and regulation of actin-based motility by Rho (Figure 5E).

The negative correlations with Otu0181 (Ruminococcaceae), Otu0080 (Oscillibacter), and
Otu0068 (Lachnospiraceae) suggest a potential regulatory role of these taxa in modulating
the pathways associated with the Visual Cycle, ABRA signaling pathway, Apelin cardiomy-
ocyte signaling pathway, and regulation of actin-based motility by Rho within the grey
module. On the other hand, the positive correlations with Otu0029 (Ruminococcaceae_UCG-
014), Otu0151 (Christensenellaceae_R-7_group), and Otu0100 (Lachnospiraceae) indicate a
potential contribution of these microbial taxa to the activation or enhancement of these
pathways. The Apelin–APJ pathway can directly antagonize vascular disease-related Ang
II actions [78], providing insights into the regulatory mechanisms of the apelin signaling
pathway in cardiovascular health. The microbiota associations suggest intriguing hypothe-
ses about how early-life microbiome interactions with host homeostatic pathways can affect
multiple major functions.

The brown module is negatively correlated significantly (p < 0.05) with Otu0039
(Clostridiales vadinBB60_group, 60.3%, p = 0.03), Otu0037 (Clostridiales_vadinBB60_group,
58.9%, p = 0.04), Otu0074 (Ruminococcaceae_UCG-014, 8.07%, p = 0.04, and positively corre-
lated with Otu0118 (Anaerotruncus, 57.7%, p = 0.03), Otu0183 (Ruminiclostridium_9, 61.26%,
p = 0.03), and Otu0066 ([Eubacterium]_hallii_group, 64.8%, p = 0.022). The top canonical
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pathways in this module are the Virus Entry via Endocytic Pathways, GABA Receptor
Signaling, Adipogenesis pathway, Semaphorin Neuronal Repulsive Signaling Pathway,
HMGB1 Signaling (Figure 5E).

The interactions observed within the brown module, as indicated by the signifi-
cant correlations with specific OTUs, suggest a complex interplay. The negative correla-
tions with OTUs such as Otu0039 (Clostridiales vadinBB60_group), Otu0037 (Clostridi-
ales_vadinBB60_group), and Otu0074 (Ruminococcaceae_UCG-014) may indicate a poten-
tial regulatory role of these taxa in modulating pathways associated with the Virus Entry
via Endocytic Pathways, GABA Receptor Signaling, Adipogenesis pathway, Semaphorin
Neuronal Repulsive Signaling Pathway, and HMGB1 Signaling within the brown module.
Altogether, these modules indicate intriguing correlations between the microbiota and
transcriptome in the context of circadian rhythms, and point to the foundational role these
interactions may have on later life metabolic and immune health.

3.4. KEGG Pathway Analysis

Our IPA and WGCNA analysis revealed several enriched pathways, including GPCR,
dopamine, serotonin, melatonin degradation, myelination, tachykinin signaling, and mito-
chondrial dysfunction. Using KEGG terms, we identified key molecules in these pathways
to understand potential mechanisms of microbiota–host crosstalk. The most enriched
genes were associated with calcium signaling, MAPK signaling, circadian entrainment,
and chemokine signaling (Figure 7). Clustering analysis (Figure 3) demonstrates that these
enhanced functional processes collectively invoke a complex interplay of signaling path-
ways, with calcium signaling emerging as a central component. Calcium signaling plays a
fundamental role in various cellular responses to environmental stimuli, including plant
defense systems, highlighting its importance in diverse biological contexts [79]. It also reg-
ulates cell cycle progression in response to abiotic stress [80]. Furthermore, reactive oxygen
species (ROS) in mitochondria trigger monoamine-induced calcium signals, influencing
physiological and pathophysiological responses to dopamine [81]. Calcium signaling is
versatile in numerous cellular functions and crucial for translocating nuclear proteins like
PKC-γ [82]. The calcium signaling is a critically important phenomenon that regulates
synaptic activity in the nervous system. Additionally, synaptic activity is the key feature of
circadian oscillations, and changes in circadian rhythms alter synapse numbers. Calcium
is the most important signaling molecule that plays a role in nervous excitability and
regulation of the biological clock [83]. Calcium signaling is intricately linked to circadian
rhythms, playing a significant role in regulating the molecular clock and coordinating vari-
ous physiological processes throughout the day. Circadian rhythms in the SCN neurons are
synchronized with calcium rhythms, indicating a causal relationship between intracellular
calcium dynamics and the generation of circadian rhythms [84]. Furthermore, regulating
voltage-dependent calcium channels (VDCCs) by circadian mechanisms is crucial for main-
taining rhythmic clock gene expression in the SCN, highlighting the importance of calcium
signaling in the molecular machinery of circadian clocks [85]. Additionally, mitochondrial
calcium signaling has been implicated in mediating rhythmic extracellular ATP accumula-
tion in SCN astrocytes, further emphasizing the role of calcium in coordinating circadian
processes at the cellular level [86]. These enriched pathways point towards key homeostatic
processes. These pathways play a role in intracellular calcium signaling, which is crucial for
activating lymphocytes and neurological functions (KEGG hsa04020). The gene regulatory
network of differentially expressed genes involved in these pathways is shown in Figure 8.
The genes in the maroon-colored PPI network in Figure 8 were found to be upregulated
and blue-colored were downregulated in extended photoperiods.
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The interaction between circadian rhythms and the gut microbiome may include
calcium signaling as a key mediator. Calcium signaling regulates neurotransmitter release
and cellular functions essential for circadian rhythm generation [87]. The influx of calcium
ions into the presynaptic terminal triggers the release of neurotransmitters into the synaptic
cleft, facilitating signal transmission between neurons [88]. This process is tightly regulated
and involves various proteins and signaling pathways. For example, synaptotagmins,
calcium sensors on synaptic vesicles, are vital for vesicle fusion with the presynaptic
membrane and subsequent neurotransmitter release [89]. Calcium signaling also modulates
synaptic plasticity, where changes in calcium levels can impact the strength of synaptic
connections and neuronal communication [90]. On the other hand, the gut microbiome can
be influenced by factors such as diet, disease, and probiotics, impacting cognitive function
and overall health [91]. Given the bidirectional communication between the gut microbiome
and the host, calcium signaling may serve as a signaling pathway through which circadian
rhythms interact with the gut microbiome. Furthermore, the gut microbiome’s role in
modulating host metabolism and immune function suggests a potential link between
calcium signaling, circadian rhythms, and gut microbiome-mediated effects on health
and disease.

4. Conclusions
This study provides novel insights into how photoperiods and circadian rhythms

modulate gene expression in the chicken brain. A key finding is the substantial alteration
of neurochemical and mitochondrial pathways under extended photoperiod conditions,
evidenced by the downregulation of pathways related to dopamine degradation, mitochon-
drial dysfunction, and G-protein coupled receptor signaling. This highlights a previously
underappreciated link between extended light exposure and critical neurophysiological
processes necessary for maintaining cellular homeostasis.

Through DiscoRhythm analysis, we identified 723 genes with pronounced circadian
oscillations, underscoring a robust and pervasive circadian regulation of metabolic and
intracellular processes. Notably, differential regulation of key circadian clock genes and
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GPCR receptors reveals a novel interaction where extended photoperiods profoundly affect
neurotransmitter and cytokine signaling pathways. The identified associations between
circadian rhythms and pathways such as Aldosterone-regulated sodium reabsorption,
GABAergic synapse function, and oxidative phosphorylation further substantiate the
innovative perspective on dopamine’s dual regulatory role and mitochondrial function in
circadian biology.

Moreover, our integrative co-expression analysis offers groundbreaking evidence
of the intricate interplay between the host’s circadian transcriptome and gut microbiota
composition. The discovery of distinct gene expression modules (MEbrown, MEturquoise,
MEblue, and MEgrey) associated specifically with microbial taxa advances our understand-
ing of microbiota–host interactions. This points to a previously unrecognized potential
for microbiota-driven modulation of circadian-regulated pathways, including cholesterol
biosynthesis, mitochondrial integrity, dopamine signaling, and melatonin metabolism.

Collectively, this work establishes a foundation for future functional studies into the
mechanisms linking circadian biology, microbiota composition, and host physiological
functions in avian models. It highlights promising strategies for targeted microbiome inter-
ventions aimed at optimizing circadian health, with significant implications for metabolic
and immune system homeostasis.
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